3 years ago

Integrating operation scheduling and binding for functional unit power-gating in high-level synthesis

Nan Wang, Song Chen, Zhiyuan Ma, Xiaofeng Ling, Yu Zhu

Publication date: Available online 15 December 2017

Source: Integration

Author(s): Nan Wang, Song Chen, Zhiyuan Ma, Xiaofeng Ling, Yu Zhu

Abstract

Power-gating-aware design has been an active area of research in the last decade, aiming at reducing power dissipation while meeting a desired system throughput. In this study, an algorithm integrating both scheduling and binding processes is developed with the functional unit (FU) power-gating technique, to achieve maximum leakage energy reduction under both performance and resource constraints. Firstly, the possible leakage energy reductions of all idle intervals are analyzed by evaluating the operation mobilities. Secondly, a split network indicating the leakage energy reduction in each idle interval is constructed, and a min-cost flow-based algorithm is conducted to this network to evaluate the total leakage energy saving from power-gating FUs; operations are scheduled to the clock cycles and bound to FUs with a maximization of leakage energy saving. Finally, proper FUs are clustered under power domain constraints to maximize the leakage energy saving while reducing the area and wirelength penalties for fine grain power-gating. Experimental results show the effectiveness of our proposed algorithms in saving leakage energy.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.