3 years ago

Influence of machine-based puffing parameters on aerosol and smoke yields from next generation nicotine inhalation products

K. Mcadam, P. Davis, L. Ashmore, D. Eaton, B. Jakaj, A. Eldridge, C. Liu

Publication date: Available online 13 November 2018

Source: Regulatory Toxicology and Pharmacology

Author(s): K. McAdam, P. Davis, L. Ashmore, D. Eaton, B. Jakaj, A. Eldridge, C. Liu


There is increasing diversity of nicotine inhalation products worldwide. Next Generation Products (NGP) such as e-cigarettes, have gained mass popularity, and there is increasing use of electrical and carbon-based Tobacco-Heating Products (e-THP and c-THP respectively). Recently, emission levels from these products have been compared to conventional cigarettes (CC); however, few formal laboratory testing standards exist, and inconsistent puffing parameters have been used. We investigated the impact of how a number of NGPs, including two e-cigarettes, a carbon-heated THP, and both pulse- and continuously-heated e-THPs, are puffed on the magnitude of their emissions, examining the influence of puff profile, volume, frequency and duration, in comparison to standard CCs.

Our findings demonstrated that for each NGP choice of puffing parameters has a substantial impact on the magnitude of aerosol and smoke emissions, and that significant differences exist between different types of NGP. With e-cigarettes and pulse-heated e-THPs puff duration is the most important puffing parameter influencing yields. In contrast, for CCs, c-THPs and continuously-heated e-THPs, puff volume and puff frequency were the critical parameters. For e-cigarettes, there was no significant difference in emissions between rectangular and bell-shaped profiles. Our study has also shown that these different behaviours are a result of how heat-management within different NGPs, from heat-source to the nicotine- and aerosol-releasing substrates, is a vital mechanistic factor impacting aerosol generation.

These findings point the need for detailed real-world e-cigarette and THP puffing topography data in order to identify the most appropriate puffing parameters for laboratory testing; our findings will help focus these studies on the most important parameters and can thereby support the future development of robust standardised NGP testing regimes.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.