5 years ago

Molecular differences between human liver fatty acid binding protein and its T94A variant in their unbound and lipid-bound states

Molecular differences between human liver fatty acid binding protein and its T94A variant in their unbound and lipid-bound states
Liver fatty acid binding protein (L-FABP) is an abundant cytosolic protein playing a central role in intracellular lipid trafficking. The L-FABP T94A variant, originating from one of the most common polymorphisms in the FABP family, is associated with several lipid-related disorders. However, the molecular factors that determine the observed functional differences are currently unknown. In our work, we performed a high resolution comparative molecular analysis of L-FABP T94T and L-FABP T94A in their unbound states and in the presence of representative ligands of the fatty acid and bile acid classes. We collected residue-resolved NMR spectral fingerprints of the two variants, and compared secondary structures, backbone dynamics, side chain arrangements, binding site occupation, and intermolecular contacts. We found that threonine to alanine replacement did not result in strongly perturbed structural and dynamic features, although differences in oleic acid binding by the two variants were detected. Based on chemical shift perturbations at sites distant from position 94 and on differences in intermolecular contacts, we suggest that long-range communication networks in L-FABP propagate the effect of amino acid substitution at sites relevant for ligand binding or biomolecular recognition.

Publisher URL: www.sciencedirect.com/science

DOI: S1570963917301462

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.