3 years ago

Product release mechanism and the complete enzyme catalysis cycle in yeast cytosine deaminase (yCD): A computational study

Product release mechanism and the complete enzyme catalysis cycle in yeast cytosine deaminase (yCD): A computational study
Yeast cytosine deaminase (yCD) is critical in gene-directed enzyme prodrug therapy as it catalyzes the hydrolytic deamination of cytosine. The product (uracil) release process is considered as rate-limiting in the whole enzymatic catalysis and includes the cleavage of the uracil-metal bond and the delivery of free uracil out of the reactive site. Herein extensive combined random acceleration molecular dynamics (RAMD) and molecular dynamics (MD) simulations coupled with the umbrella sampling technique have been performed to study the product transport mechanism. Five channels have been identified, and the thermodynamic and dynamic characterizations for the two most favorable channels have been determined and analyzed. The free energy barrier for the most beneficial pathway is about 13kcal/mol and mainly results from the cleavage of hydrogen bonds between the ligand uracil and surrounding residues Asn51, Glu64, and Asp155. The conjugated rings of Phe114 and Trp152 play gating and guiding roles in the product delivery via ππ van der Waals interactions with the product. Finally, the full cycle of the enzymatic catalysis has been determined, making the whole process computationally more precise.

Publisher URL: www.sciencedirect.com/science

DOI: S1570963917300833

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.