Diverging, but negligible power at Carnot efficiency: theory and experiment.
We discuss the possibility of reaching the Carnot efficiency by heat engines (HEs) out of quasi-static conditions at nonzero power output. We focus on several models widely used to describe the performance of actual HEs. These models comprise quantum thermoelectric devices, linear irreversible HEs, minimally nonlinear irreversible HEs, HEs working in the regime of low dissipation, over-damped stochastic HEs and an under-damped stochastic HE. Although some of these HEs can reach the Carnot efficiency at nonzero and even diverging power, the magnitude of this power is always negligible compared to the maximum power attainable in these systems. We provide conditions for attaining the Carnot efficiency in the individual models and explain practical aspects connected with reaching the Carnot efficiency at large power output. Furthermore, we show how our findings can be tested in practice using a standard Brownian HE realizable with available micromanipulation techniques.
Publisher URL: http://arxiv.org/abs/1708.06261
DOI: arXiv:1708.06261v3
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.