3 years ago

Correlation between SFR surface density and thermal pressure of ionized gas in local analogs of high-redshift galaxies.

Tianxing Jiang, Sangeeta Malhotra, Huan Yang, James E. Rhoads

We explore the relation between the star formation rate surface density ($\Sigma$SFR) and the interstellar gas pressure for nearby compact starburst galaxies. The sample consists of 17 green peas and 19 Lyman break analogs. Green peas are nearby analogs of Ly$\alpha$ emitters at high redshift and Lyman break analogs are nearby analogs of Lyman break galaxies at high redshift. We measure the sizes for green peas using Hubble Space Telescope Cosmic Origins Spectrograph (COS) NUV images with a spatial resolution of $\sim$ 0.05$^{''}$. We estimate the gas thermal pressure in HII regions by $P = N_{total}Tk{_B} \simeq 2n_{e}Tk{_B}$. The electron density is derived using the [SII] doublet at 6716,6731 \AA, and the temperature is calculated from the [OIII] lines. The correlation is characterized by $\Sigma$ SFR = 2.40$\times$10$^{-3\,}$M$_{\odot\,}$yr$^{-1\,}$kpc$^{-2}$\left(\frac{P/k_{B}}{10^{4}cm^{-3}K}\right)^{1.33}$. Green peas and Lyman break analogs have high $\Sigma$SFR up to 1.2 M$_{\odot\,}$yr$^{-1\,}$kpc$^{-2}$ and high thermal pressure in HII region up to P/k$_B$ $\sim$10$^{7.2}{\rm\, K\, cm}^{-3}$. These values are at the highest end of the range seen in nearby starburst galaxies. The high gas pressure and the correlation, are in agreement with those found in star-forming galaxies at z $\sim$ 2.5. These extreme pressures are shown to be responsible for driving galactic winds in nearby starbursts. These outflows may be a crucial in enabling Lyman-$\alpha$ and Lyman-continuum to escape.

Publisher URL: http://arxiv.org/abs/1811.05663

DOI: arXiv:1811.05663v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.