3 years ago

Detection of topological phases by quasi-local operators.

Wing Chi Yu, P. D. Sacramento, Yan Chao Li, D.g. Angelakis, Hai-qing Lin

It has been proposed recently by some of the authors that the quantum phase transition of a topological insulator like the SSH model may be detected by the eigenvalues and eigenvectors of the reduced density matrix. Here we further extend the scheme of identifying the order parameters by considering the SSH model with the addition of triplet superconductivity. This model has a rich phase diagram due to the competition of the SSH "order" and the Kitaev "order", which requires the introduction of four order parameters to describe the various topological phases. We show how these order parameters can be expressed simply as averages of projection operators on the ground state at certain points deep in each phase and how one can simply obtain the phase boundaries. A scaling analysis in the vicinity of the transition lines is consistent with the quantum Ising universality class.

Publisher URL: http://arxiv.org/abs/1811.05634

DOI: arXiv:1811.05634v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.