3 years ago

MT-CGCNN: Integrating Crystal Graph Convolutional Neural Network with Multitask Learning for Material Property Prediction.

Soumya Sanyal, Janakiraman Balachandran, Naganand Yadati, Abhishek Kumar, Padmini Rajagopalan, Suchismita Sanyal, Partha Talukdar

Developing accurate, transferable and computationally inexpensive machine learning models can rapidly accelerate the discovery and development of new materials. Some of the major challenges involved in developing such models are, (i) limited availability of materials data as compared to other fields, (ii) lack of universal descriptor of materials to predict its various properties. The limited availability of materials data can be addressed through transfer learning, while the generic representation was recently addressed by Xie and Grossman [1], where they developed a crystal graph convolutional neural network (CGCNN) that provides a unified representation of crystals. In this work, we develop a new model (MT-CGCNN) by integrating CGCNN with transfer learning based on multi-task (MT) learning. We demonstrate the effectiveness of MT-CGCNN by simultaneous prediction of various material properties such as Formation Energy, Band Gap and Fermi Energy for a wide range of inorganic crystals (46774 materials). MT-CGCNN is able to reduce the test error when employed on correlated properties by upto 8%. The model prediction has lower test error compared to CGCNN, even when the training data is reduced by 10%. We also demonstrate our model's better performance through prediction of end user scenario related to metal/non-metal classification. These results encourage further development of machine learning approaches which leverage multi-task learning to address the aforementioned challenges in the discovery of new materials. We make MT-CGCNN's source code available to encourage reproducible research.

Publisher URL: http://arxiv.org/abs/1811.05660

DOI: arXiv:1811.05660v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.