3 years ago

Specialized Support Vector Machines for Open-set Recognition.

Pedro Ribeiro Mendes Júnior, Terrance E. Boult, Jacques Wainer, Anderson Rocha

Often, when dealing with real-world recognition problems, we do not need, and often cannot have, knowledge of the entire set of possible classes that might appear during operational testing. Sometimes, some of these classes may be ill-sampled, not sampled at all or undefined. In such cases, we need to think of robust classification methods able to deal with the "unknown" and properly reject samples belonging to classes never seen during training. Notwithstanding, almost all existing classifiers to date were mostly developed for the closed-set scenario, i.e., the classification setup in which it is assumed that all test samples belong to one of the classes with which the classifier was trained. In the open-set scenario, however, a test sample can belong to none of the known classes and the classifier must properly reject it by classifying it as unknown. In this work, we extend upon the well-known Support Vector Machines (SVM) classifier and introduce the Specialized Support Vector Machines (SSVM), which is suitable for recognition in open-set setups. SSVM balances the empirical risk and the risk of the unknown and ensures that the region of the feature space in which a test sample would be classified as known (one of the known classes) is always bounded, ensuring a finite risk of the unknown. The same cannot be guaranteed by the traditional SVM formulation, even when using the Radial Basis Function (RBF) kernel. In this work, we also highlight the properties of the SVM classifier related to the open-set scenario, and provide necessary and sufficient conditions for an RBF SVM to have bounded open-space risk. We also indicate promising directions of investigation of SVM-based methods for open-set scenarios. An extensive set of experiments compares the proposed method with existing solutions in the literature for open-set recognition and the reported results show its effectiveness.

Publisher URL: http://arxiv.org/abs/1606.03802

DOI: arXiv:1606.03802v7

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.