3 years ago

Geometry-Aware Recurrent Neural Networks for Active Visual Recognition.

Ricson Cheng, Ziyan Wang, Katerina Fragkiadaki

We present recurrent geometry-aware neural networks that integrate visual information across multiple views of a scene into 3D latent feature tensors, while maintaining an one-to-one mapping between 3D physical locations in the world scene and latent feature locations. Object detection, object segmentation, and 3D reconstruction is then carried out directly using the constructed 3D feature memory, as opposed to any of the input 2D images. The proposed models are equipped with differentiable egomotion-aware feature warping and (learned) depth-aware unprojection operations to achieve geometrically consistent mapping between the features in the input frame and the constructed latent model of the scene. We empirically show the proposed model generalizes much better than geometryunaware LSTM/GRU networks, especially under the presence of multiple objects and cross-object occlusions. Combined with active view selection policies, our model learns to select informative viewpoints to integrate information from by "undoing" cross-object occlusions, seamlessly combining geometry with learning from experience.

Publisher URL: http://arxiv.org/abs/1811.01292

DOI: arXiv:1811.01292v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.