3 years ago

Robust variable screening for regression using factor profiling.

Yixin Wang, Stefan Van Aelst

Sure Independence Screening is a fast procedure for variable selection in ultra-high dimensional regression analysis. Unfortunately, its performance greatly deteriorates with increasing dependence among the predictors. To solve this issue, Factor Profiled Sure Independence Screening (FPSIS) models the correlation structure of the predictor variables, assuming that it can be represented by a few latent factors. The correlations can then be profiled out by projecting the data onto the orthogonal complement of the subspace spanned by these factors. However, neither of these methods can handle the presence of outliers in the data. Therefore, we propose a robust screening method which uses a least trimmed squares method to estimate the latent factors and the factor profiled variables. Variable screening is then performed on factor profiled variables by using regression MM-estimators. Different types of outliers in this model and their roles in variable screening are studied. Both simulation studies and a real data analysis show that the proposed robust procedure has good performance on clean data and outperforms the two nonrobust methods on contaminated data.

Publisher URL: http://arxiv.org/abs/1711.09586

DOI: arXiv:1711.09586v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.