3 years ago

Energy‐induced polymorphic changes in poly(vinylidene fluoride): How ultrasonication results in polymer with predominantly γ phase

Rajvihar Sivaraman Nair Rajeev, Panthaplackal Bhaskaran Soumyamol, Roopa Dimple, Kunduchi Periya Vijayalakshmi, Soundiraraju Bhuvaneswari, Rinu Elizabeth Roy


Self‐polarized poly(vinylidene fluoride) (PVDF) films were prepared via solution crystallization technique wherein the polymorphism of the films was controlled from α phase (>85%) to γ phase (>90%) by varying the time of ultrasonication. On increasing ultrasonication time up to 60 min, γ phase crystallites were found to be self‐aligned in the matrix while an equal proportion of α and γ phases coexist in the PVDF films ultrasonicated for 120 min. The phase conversion as well as inversion was evident from Fourier transform infrared, X‐ray diffraction, and differential scanning calorimetry analyses. Microscopic images of films ultrasonicated for 60 min showed a scrolled lamellar morphology while those sonicated for 120 min showed mixture of scrolled lamellar and spherulitic morphology. With the help of computational studies, it is explained that a large amount of energy is required for transforming trans‐gauche‐trans‐gauche into trans‐trans‐trans‐gauche conformation which is provided by ultrasonication. The mechanism of γ phase formation is proposed based on the experimental and theoretical approaches. Our studies show that just by tuning the time of ultrasonication, PVDF films with various morphologies can be processed; either one with predominantly electroactive γ phase with superior electrical properties or one with equal proportion of α and γ phases with superior mechanical properties. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.