3 years ago

Optimal Distributed Control of a Generalized Fractional Cahn–Hilliard System

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels


In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” by the same authors, general well-posedness results have been established for a class of evolutionary systems of two equations having the structure of a viscous Cahn–Hilliard system, in which nonlinearities of double-well type occur. The operators appearing in the system equations are fractional versions in the spectral sense of general linear operators  AB  having compact resolvents, which are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. In this work we complement the results given in the quoted paper by studying a distributed control problem for this evolutionary system. The main difficulty in the analysis is to establish a rigorous Fréchet differentiability result for the associated control-to-state mapping. This seems only to be possible if the state stays bounded, which, in turn, makes it necessary to postulate an additional global boundedness assumption. One typical situation, in which this assumption is satisfied, arises when B is the negative Laplacian with zero Dirichlet boundary conditions and the nonlinearity is smooth with polynomial growth of at most order four. Also a case with logarithmic nonlinearity can be handled. Under the global boundedness assumption, we establish existence and first-order necessary optimality conditions for the optimal control problem in terms of a variational inequality and the associated adjoint state system.

Publisher URL: https://link.springer.com/article/10.1007/s00245-018-9540-7

DOI: 10.1007/s00245-018-9540-7

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.