3 years ago

Hate is in the air! But where? Introducing an algorithm to detect hate speech in digital microenvironments

Fernando Miró-Llinares, Asier Moneva, Miriam Esteve


With the objective of facilitating and reducing analysis tasks undergone by law enforcement agencies and service providers, and using a sample of digital messages (i.e., tweets) sent via Twitter following the June 2017 London Bridge terror attack (N = 200,880), the present study introduces a new algorithm designed to detect hate speech messages in cyberspace. Unlike traditional designs based on semantic and syntactic approaches, the algorithm hereby implemented feeds solely on metadata, achieving high level of precision. Through the application of the machine learning classification technique Random Forests, our analysis indicates that metadata associated with the interaction and structure of tweets are especially relevant to identify the content they contain. However, metadata of Twitter accounts are less useful in the classification process. Collectively, findings from the current study allow us to demonstrate how digital microenvironment patterns defined by metadata can be used to create a computer algorithm capable of detecting online hate speech. The application of the algorithm and the direction of future research in this area are discussed.

Publisher URL: https://link.springer.com/article/10.1186/s40163-018-0089-1

DOI: 10.1186/s40163-018-0089-1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.