3 years ago

Motor insurance claim modelling with factor collapsing and Bayesian model averaging

Sen Hu, Adrian O'Hagan, Thomas Brendan Murphy


While generalized linear models have become the insurance industry's standard approach for claim modelling, the approach of utilizing a single best model on which predictions are based ignores model selection uncertainty. An additional feature of insurance claim data sets is the common presence of categorical variables, within which the number of levels is high, and not all levels may be statistically significant. In such cases, some subsets of the levels may be merged to give a smaller overall number of levels for improved model parsimony and interpretability. Hence, clustering of the levels poses an additional model uncertainty issue. A method is proposed for assessing the optimal manner of collapsing factors with many levels into factors with smaller numbers of levels, and Bayesian model averaging is used to blend model predictions from all reasonable models to account for selection uncertainty. This method will be computationally intensive when the number of factors being collapsed or the number of levels within factors increases. Hence, a stochastic approach is used to quickly identify the best collapsing cases across the model space. Copyright © 2018 John Wiley & Sons, Ltd.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.