3 years ago

[ASAP] Mechanisms for Abiotic Dechlorination of Trichloroethene by Ferrous Minerals under Oxic and Anoxic Conditions in Natural Sediments

[ASAP] Mechanisms for Abiotic Dechlorination of Trichloroethene by Ferrous Minerals under Oxic and Anoxic Conditions in Natural Sediments
Charles E. Schaefer, Paul Ho, Erin Berns, Charles Werth
Bench-scale experiments were performed on natural sediments to assess abiotic dechlorination of trichloroethene (TCE) under both aerobic and anaerobic conditions. In the absence of oxygen (<26 μM), TCE dechlorination proceeded via a reductive pathway generating acetylene and/or ethene. Reductive dechlorination rate constants up to 3.1 × 10–5 d–1 were measured, after scaling to in situ solid:water ratios. In the presence of oxygen greater than 120 μM, TCE dechlorination proceeded via an oxidative pathway generating formic/glyoxylic and glycolic/acetic acids, and oxidative dechlorination rate constants (again scaled to in situ conditions) up to 7.4 × 10–3 d–1 were measured. These rates correspond to half-lives of 60 and 0.25 years for abiotic TCE dechlorination under anaerobic and aerobic conditions, respectively, indicating the potentially large impact of aerobic TCE oxidation in the field. For both reductive and oxidative TCE dechlorination pathways, measured first-order rate constants increased with increasing ferrous iron content, suggesting the role of iron oxidation. Hydroxyl radical formation was measured and increased with increasing oxygen and ferrous iron content. Rate constants associated with TCE oxidation products increased with increasing hydroxyl radical generation rates, and were zero in the presence of a hydroxyl radical scavenger, suggesting that oxidative TCE dechlorination is a hydroxyl radical driven process.

Publisher URL: http://dx.doi.org/10.1021/acs.est.8b04108

DOI: 10.1021/acs.est.8b04108

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.