3 years ago

The response of different tungsten material grades to 1 MeV Kr+2 heavy ion irradiation at different conditions Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation

O. El-atwani, E. Esquivel, E. Aydogan, E. Martinez, K. Baldwin, M. Li, B.p. Uberuaga, S.a. Maloy

Publication date: Available online 15 November 2018

Source: Acta Materialia

Author(s): O. El-Atwani, E. Esquivel, E. Aydogan, E. Martinez, K. Baldwin, M. Li, B.P. Uberuaga, S.A. Maloy


Nanocrystalline metals are often postulated as irradiation tolerant materials due to higher grain boundary densities. The efficiency of these materials in mitigating irradiation damage is still under investigation. Here, we present an in-situ transmission electron microscopy with ion irradiation study on equiaxed 35 nm grained tungsten (NCW-35 nm) and compare its radiation tolerance, in terms of dislocation loop damage, to several other grades of tungsten with different grain sizes at two temperatures (RT and 1073 K). The NCW-35 nm was shown to possess significant higher radiation tolerance in terms of loop damage. As demonstrated by Kinetic Monte Carlo simulations, at least part of the higher radiation tolerance of the small grains is due to higher interstitial storage (at the grain boundaries) and defect recombination (in the grain interiors) in the small grain material. In addition, experimental observations reveal rapid and efficient dislocation loop absorption by the grain boundaries and this is considered the dominant factor for mass transport to the boundaries during irradiation, enabling the remarkable radiation tolerance of 35 nm grained tungsten. This study demonstrates the possibility of attaining high radiation tolerant materials, in terms of dislocation loop damage, by minimizing grain sizes in the nanocrystalline regime.

Graphical abstract

Image 1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.