3 years ago

Bandgap engineering of TiO2 nanoparticles through MeV Cu ions irradiation

Ishaq Ahmad, Muhammad Usman, Ting-kai Zhao, Sara Qayum, Iram Mahmood, Arshad Mahmood, Abdoulaye Diallo, Camillus Obayi, Fabian Ifeanyichukwu Ezema, Maaza Malik

Publication date: Available online 14 November 2018

Source: Arabian Journal of Chemistry

Author(s): Ishaq Ahmad, Muhammad Usman, Ting-kai Zhao, Sara Qayum, Iram Mahmood, Arshad Mahmood, Abdoulaye Diallo, Camillus Obayi, Fabian Ifeanyichukwu Ezema, Maaza Malik

Abstract

The effect of 5 MeV Cu++ ions irradiation on structural and optical properties of Anatase TiO2 nanoparticles (TiO2-NPs) is investigated. For this purpose, TiO2-NPs are irradiated with different Cu++ ions fluences, ranging from 1×1015 to 1×1016 ions/cm2 at room temperature. XRD results confirm the Ti3O7 phase appear at the dose of 5x1015 ions/cm2and peak intensity of Ti3O7 phase gradually increases with an increase of Cu++ ions irradiation dose. At the dose of 1×1016 ions/cm2 TiO2 Anatase phase were transformed to Rutile phase. Same observations are confirmed from Raman spectroscopy. High resolution transmission electron microscopy (HRTEM) reveals that morphology converted into wavy shape and crystal structure detrioted with increase Cu ion irradiation dose to form vacancy loops and interstitial loops. Scanning electron microscopy (SEM) shows that TiO2-NPs have been fused to form a cluster of nanoparticles at high Cu ion beam dose, while bandgap of TiO2-NPs reduces from 3.19 eV to 2.96 eV as a function of Cu++ irradiation fluence. These phase transformations and crystal damage are the responsible for optical bandgap reduction. The mechanism for the currently observed phase transformation of TiO2 and coalescence of TiO2-NPs are discussed in term of thermal spikes model.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.