3 years ago

Robust Neighborhood Graphing for Semi-Supervised Indoor Localization With Light-Loaded Location Fingerprinting

Mu Zhou, Yunxia Tang, Zengshan Tian, Liangbo Xie, Wei Nie,
The indoor localization systems based on wireless local area network received signal strength (RSS) have been widely applied due to the simplicity of system deployment as well as easy implementation on various mobile devices like the smartphones. However, they are often suffered by the major drawback of the extensive effort for location fingerprinting which is significantly labor-intensive and time-consuming. In response to this compelling problem, we design an improved manifold alignment approach to construct a cost-efficient radio map which consists of the sparsely collected location fingerprints and crowdsourcing RSS data with the purpose of reducing the overall fingerprints calibration effort. A new graph construction scheme which is proved to be the optimal choice to model the smoothness assumption in semi-supervised learning is proposed to explore the informativeness conveyed by location fingerprints during the process of radio map construction. In addition, the concept of execution characteristic function is considered to minimize the RSS sample capacity at each reference point to reduce fingerprints calibration effort further. Finally, the extensive experimental results demonstrate the performance improvement by the proposed system with the probability of localization errors within 3 m, 79.60%, which is at most 26.30 percentages higher than the one by the existing systems using location fingerprints solely.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.