3 years ago

Check in or Not? A Stochastic Game for Privacy Preserving in Point-of-Interest Recommendation System

Lei Xu, Chunxiao Jiang, Nengqiang He, Yi Qian, Yong Ren, Jianhua Li,
With the growing popularity of mobile social networks, point-of-interest (POI) recommendation, which utilizes users’ check-in data to suggest interesting places for users, has attracted much attention in recent years. The check-in data, containing time and location information, are closely related to the user’s personal life. Due to privacy concerns, users are reluctant to share check-in data with the service provider (SP), which causes a negative effect on recommendations. It is important for the user to find a balance between privacy and recommendation quality. In this paper, we consider a POI recommendation scenario where an adversary can access the data that a user reports to the SP. The user sequentially decides whether to check in for the POI he has visited. A stochastic game model is proposed to analyze the interaction between the user and the adversary. To find a good policy for the user, two value iteration algorithms are applied. The proposed game has a large state set, which makes it difficult for policy learning. To deal with this problem, we use some tricks when implementing the minimax Q-learning algorithm, and a set of neural networks are trained to approximate the Q-functions. To evaluate the performance of the learning algorithms, we conduct a series of simulations by using real-world check-in data. Simulation results show that the proposed learning algorithms can help the user to make good decisions, in the sense that the user can get a high long-term return.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.