3 years ago

Control of Metal–Organic Framework Crystallization by Metastable Intermediate Pre‐equilibrium Species

Hamish Hei-Man Yeung, Adam F Sapnik, Felicity Massingberd-Mundy, Michael W Gaultois, Yue Wu, Duncan X Fraser, Sebastian Henke, Roman Pallach, Niclas Heidenreich, Oxana Magdysyuk, Nghia T Vo, Andrew L Goodwin


There is an increasingly large amount of interest in metal‐organic frameworks (MOFs) for a variety of applications, from gas sensing and separations to electronics and catalysis. Their exciting properties arise from their modular architectures, which self‐assemble from different combinations of metal‐based and organic building units. However, the exact mechanisms by which they crystallize remain poorly understood, thus limiting any realisation of real “structure by design”. We report important new insight into MOF formation, gained using in situ X‐ray diffraction, pH and turbidity measurements to uncover for the first time the evolution of metastable intermediate species in the canonical zeolitic imidazolate framework system, ZIF‐8. We reveal that the intermediate species exist in a dynamic pre‐equilibrium prior to network assembly and, depending on the reactant concentrations and the progress of reaction, the pre‐equilibrium can be made to favour under‐ or over‐coordinated Zn‐imidazolate species, thus accelerating or inhibiting crystallization, respectively. We thereby find that concentration can be effectively used as a synthetic handle to directly control particle size, with great implications for industrial scale‐up and gas sorption applications. These finding enables us to rationalise the apparent contradictions between previous studies of ZIF‐8 and, importantly, opens up new opportunities for the control of crystallization in network solids more generally, from the design of local structure to assembly of particles with precise dimensions.

Publisher URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201810039

DOI: 10.1002/anie.201810039

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.