3 years ago

Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction

Thibault Fogeron, Pascal Retailleau, Lise-Marie Chamoreau, Yun Li, Marc Fontecave


Two original dithiolenes, with a pyrazine ring fused with a pyran ring carrying the dithiolene chelate, mimicking molybdopterin (MPT) present in the active site of formate dehydrogenases (FDHs), have been synthesized. The first one mimicks MPT in the dihydropyrazine form while the second mimicks MPT in the more biologically relevant tetrahydropyrazine form. Both have been structurally characterized as a ligand within a Co(cyclopentadienyl)(dithiolene) complex. The corresponding MoO(dithiolene)2 complexes have been also prepared and are reported as the first functional and stable catalysts inspired by the Mo center of FDHs so far: they indeed catalyze the photoreduction of CO2 into formic acid, as the major product, and carbon monoxide, achieving more than 100 turnover numbers in about 8 h.

Publisher URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201809084

DOI: 10.1002/anie.201809084

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.