3 years ago

A Neurodynamical model of Saliency prediction in V1.

David Berga, Xavier Otazu

Computations in the primary visual cortex (area V1 or striate cortex) have long been hypothesized to be responsible, among several visual processing mechanisms, of bottom-up visual attention (also named saliency). In order to validate this hypothesis, images from eye tracking datasets are processed with a biologically plausible model of V1 able to reproduce other visual processes such as brightness, chromatic induction and visual discomfort. Following Li's neurodynamical model, we define V1's lateral connections with a network of firing rate neurons, sensitive to visual features such as brightness, color, orientation and scale. The resulting saliency maps are generated from the model output, representing the neuronal activity of V1 projections towards brain areas involved in eye movement control. Our predictions are supported with eye tracking experimentation and results show an improvement with respect to previous models as well as consistency with human psychophysics. We propose a unified computational architecture of the primary visual cortex that models several visual processes without applying any type of training or optimization and keeping the same parametrization.

Publisher URL: http://arxiv.org/abs/1811.06308

DOI: arXiv:1811.06308v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.