3 years ago

Two‐Photon Polymerization as a Tool for Studying 3D Printed Topography‐Induced Stem Cell Fate

Kristan S. Worthington, Anh-Vu Do, Rasheid Smith, Budd A. Tucker, Aliasger K. Salem


Geometric topographies are known to influence cellular differentiation toward specific phenotypes, but to date the range of features and type of substrates that can be easily fabricated to study these interactions is somewhat limited. In this study, an emerging technology, two‐photon polymerization, is used to print topological patterns with varying feature‐size and thereby study their effect on cellular differentiation. This technique offers rapid manufacturing of topographical surfaces with good feature resolution for shapes smaller than 3 µm. Human‐induced pluripotent stem cells, when attached to these substrates or a non‐patterned control for 1 week, express an array of genetic markers that suggest their differentiation toward a heterogeneous population of multipotent progenitors from all three germ layers. Compared to the topographically smooth control, small features (1.6 µm) encourage differentiation toward ectoderm while large features (8 µm) inhibit self‐renewal. This study demonstrates the potential of using two‐photon polymerization to study and control stem cell fate as a function of substrate interactions. The ability to tailor and strategically design biomaterials in this way can enable more precise and efficient generation or maintenance of desired phenotypes in vitro and in vivo.

Publisher URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.201800370

DOI: 10.1002/mabi.201800370

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.