3 years ago

Networks of non-equilibrium condensates for global optimization.

Kirill P. Kalinin, Natalia G. Berloff

Recently several gain-dissipative platforms based on the networks of optical parametric oscillators, lasers, and various non-equilibrium Bose-Einstein condensates have been proposed and realised as analogue Hamiltonian simulators for solving large-scale hard optimisation problems. However, in these realisations the parameters of the problem depend on the node occupancies that are not known a priori, which limits the applicability of the gain-dissipative simulators to the classes of problems easily solvable by classical computations. We show how to overcome this difficulty and formulate the principles of operation of such simulators for solving the NP-hard large-scale optimisation problems such as constant modulus continuous quadratic optimisation and quadratic binary optimisation for any general matrix. To solve such problems any gain-dissipative simulator has to implement a feedback mechanism for the dynamical adjustment of the gain and coupling strengths.

Publisher URL: http://arxiv.org/abs/1805.01371

DOI: arXiv:1805.01371v5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.