3 years ago

Fast error-controlling MOID computation for confocal elliptic orbits.

Roman V. Baluev, Denis V. Mikryukov

We present an algorithm to compute the minimum orbital intersection distance (MOID), or global minimum of the distance between the points lying on two Keplerian ellipses. This is achieved by finding all stationary points of the distance function, based on solving an algebraic polynomial equation of $16$th degree. The algorithm tracks numerical errors appearing on the way, and treats carefully nearly degenerate cases, including practical cases with almost circular and almost coplanar orbits. Benchmarks confirm its high numeric reliability and accuracy, and that regardless of its error--controlling overheads, this algorithm pretends to be one of the fastest MOID computation methods available to date, so it may be useful in processing large catalogs.

Publisher URL: http://arxiv.org/abs/1811.06373

DOI: arXiv:1811.06373v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.