3 years ago

Fast Iterative Combinatorial Auctions via Bayesian Learning.

Gianluca Brero, Sébastien Lahaie, Sven Seuken

Iterative combinatorial auctions (CAs) are often used in multi-billion dollar domains like spectrum auctions, and speed of convergence is one of the crucial factors behind the choice of a specific design for practical applications. To achieve fast convergence, current CAs require careful tuning of the price update rule to balance convergence speed and allocative efficiency. Brero and Lahaie (2018) recently introduced a Bayesian iterative auction design for settings with single-minded bidders. The Bayesian approach allowed them to incorporate prior knowledge into the price update algorithm, reducing the number of rounds to convergence with minimal parameter tuning. In this paper, we generalize their work to settings with no restrictions on bidder valuations. We introduce a new Bayesian CA design for this general setting which uses Monte Carlo Expectation Maximization to update prices at each round of the auction. We evaluate our approach via simulations on CATS instances. Our results show that our Bayesian CA outperforms even a highly optimized benchmark in terms of clearing percentage and convergence speed.

Publisher URL: http://arxiv.org/abs/1809.05340

DOI: arXiv:1809.05340v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.