3 years ago

Automatic Grammar Augmentation for Robust Voice Command Recognition.

Yang Yang, Anusha Lalitha, Jinwon Lee, Chris Lott

This paper proposes a novel pipeline for automatic grammar augmentation that provides a significant improvement in the voice command recognition accuracy for systems with small footprint acoustic model (AM). The improvement is achieved by augmenting the user-defined voice command set, also called grammar set, with alternate grammar expressions. For a given grammar set, a set of potential grammar expressions (candidate set) for augmentation is constructed from an AM-specific statistical pronunciation dictionary that captures the consistent patterns and errors in the decoding of AM induced by variations in pronunciation, pitch, tempo, accent, ambiguous spellings, and noise conditions. Using this candidate set, greedy optimization based and cross-entropy-method (CEM) based algorithms are considered to search for an augmented grammar set with improved recognition accuracy utilizing a command-specific dataset. Our experiments show that the proposed pipeline along with algorithms considered in this paper significantly reduce the mis-detection and mis-classification rate without increasing the false-alarm rate. Experiments also demonstrate the consistent superior performance of CEM method over greedy-based algorithms.

Publisher URL: http://arxiv.org/abs/1811.06096

DOI: arXiv:1811.06096v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.