3 years ago

Language Classes Associated With Automata Over Matrix Groups.

Özlem Salehi, Flavio D'alessandro, A. C. Cem Say

We investigate the language classes recognized by group automata over matrix groups. For the case of $2 \times 2 $ matrices, we prove that the corresponding group automata for rational matrix groups are more powerful than the corresponding group automata for integer matrix groups. Finite automata over some special matrix groups, such as the discrete Heisenberg group and the Baumslag-Solitar group are also examined. We also introduce the notion of time complexity for group automata and demonstrate some separations among related classes. The case of linear-time bounds is examined in detail throughout our repertory of matrix group automata.

Publisher URL: http://arxiv.org/abs/1810.12415

DOI: arXiv:1810.12415v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.