3 years ago

Experimental investigations of bubble behaviors and heat transfer performance on micro/nanostructure surfaces

Jie Zhou, Bin Liu, Baojin Qi, Jinjia Wei, Haiyang Mao

Publication date: January 2019

Source: International Journal of Thermal Sciences, Volume 135

Author(s): Jie Zhou, Bin Liu, Baojin Qi, Jinjia Wei, Haiyang Mao

Abstract

The multi-level hierarchical surfaces combining different characteristics of single modified surfaces such as expanded heat transfer area, nucleation site density and capillary wickability can further enhance the heat transfer performance. The pool boiling experiment of FC-72 with 35 K subcooling was conducted on the hybrid micro/nanostructure surface (NPF50-60) with nanoforest structure fabricated on the top and bottom of micro-pin-fins using the dry etching and plasma repolymerization techniques. As a comparison, experiments were also conducted on the smooth surface (S), the micro-pin-finned surface (PF50-60) and the nanoforest surface (NS). The novel phenomenon of bubble oscillation on heating surface was observed, which is considered as the result of interactions between evaporation and condensation effects. The predictions of bubble center position during oscillation from forces analysis agree well with the experimental results. In addition, the bubble jumping induced by coalescence was also observed. The results indicated that the three micro/nanostructure surfaces can significantly enhance the boiling heat transfer performance compared to the smooth surface. The lower wall superheat and greater heat transfer coefficient (HTC) with relatively large critical heat flux (CHF) were achieved on the hybrid micro/nanostructure surface for the larger cavity size of nanoforest structure. The wicking velocity of different surfaces obtained from the capillary wickability tests shows a good linear relationship with the CHF. It was concluded that the mechanism of CHF enhancement on micro/nanostructure surfaces is the liquid replenishment with capillary wickability to prevent the expansion of dry spots and maintain a higher critical heat flux.

Graphical abstract

Image 1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.