3 years ago

On correctors for linear elliptic homogenization in the presence of local defects: The case of advection–diffusion

X. Blanc, C. Le Bris, P.-l. Lions

Publication date: Available online 21 April 2018

Source: Journal de Mathématiques Pures et Appliquées

Author(s): X. Blanc, C. Le Bris, P.-L. Lions

Abstract

We follow-up on our works devoted to homogenization theory for linear second-order elliptic equations with coefficients that are perturbations of periodic coefficients. We have first considered equations in divergence form in [6], [7], [8]. We have next shown, in our recent work [9], using a slightly different strategy of proof than in our earlier works, that we may also address the equation aijiju=f. The present work is devoted to advection–diffusion equations: aijiju+bjju=f. We prove, under suitable assumptions on the coefficients aij, bj, 1i,jd (typically that they are the sum of a periodic function and some perturbation in Lp, for suitable p<+), that the equation admits a (unique) invariant measure and that this measure may be used to transform the problem into a problem in divergence form, amenable to the techniques we have previously developed for the latter case.

Résumé

Nous continuous ici notre série de travaux sur l'homogénéisation d'équations linéaires elliptiques du second ordre dont les coefficients sont des perturbations de coefficients périodiques. Nous avons considéré les équations sous forme divergence dans [6], [7], [8], et, grâce à une stratégie de preuve légèrement différente, l'équation aijiju=f dans notre travail plus récent [9]. Ici, nous étudions les équations d'advection–diffusion : aijiju+bjju=f. Nous montrons, sous des hypothèses adéquates sur les coefficients aij, bj, 1i,jd (typiquement qu'ils sont somme d'une fonction périodique et d'une fonction dans Lp, pour p<+ convenable), que l'équation admet une (unique) mesure invariante qui peut être utilisée pour transformer l'équation en une équation sous forme divergence, équation qu'on

-Abstract Truncated-

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.