3 years ago

Wolbachia spread dynamics in multi-regimes of environmental conditions

Linchao Hu, Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng

Publication date: Available online 16 November 2018

Source: Journal of Theoretical Biology

Author(s): Linchao Hu, Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng


Mosquito-borne diseases such as dengue fever and Zika kill more than 700,000 people each year in the world. A novel strategy to control these diseases employs the bacterium Wolbachia whose infection in mosquitoes blocks virus replication. The prerequisite for this measure is to release Wolbachia -infected mosquitoes to replace wild population. Due to the fluctuation of environmental conditions for mosquito growth, we develop and analyze a model of differential equations with parameters randomly changing over multiple environmental regimes. By comparing the dynamics between the stochastic system and constructed auxiliary systems, combined with other techniques, we provide sharp estimates on the threshold releasing level for Wolbachia fixation. We define the alarm period of disease transmission to measure the risk of mosquito-borne diseases. Our numerical simulations suggest that more frequent inter-regime transitions help reduce the alarm period, and the disease transmission is more sensitive to the average climatic conditions than the number of sub-regimes over a given time period. Further numerical examples also indicate that the reduction in the waiting time to suppress 95% of wild population is more evident when the releasing amount is increased up to a double of the wild population.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.