5 years ago

Leakage and sweet spots in triple-quantum-dot spin qubits: a molecular orbital study.

Xu-Chen Yang, Xin Wang, Chengxian Zhang

A triple-quantum-dot system can be operated as either an exchange-only qubit or a resonant-exchange qubit. While it is generally believed that the decisive advantage of the resonant-exchange qubit is the suppression of charge noise because it is operated at a sweet spot, we show that the leakage is also an important factor. Through molecular-orbital-theoretic calculations, we show that when the system is operated in the exchange-only scheme, the leakage to states with double electron occupancy in quantum dots is severe when rotations around the axis 120$^\circ$ from $\hat{z}$ is performed. While this leakage can be reduced by either shrinking the dots or separating them further, the exchange interactions are also suppressed at the same time, making the gate operations unfavorably slow. When the system is operated as a resonant-exchange qubit, the leakage is 3-5 orders of magnitude smaller. We have also calculated the optimal detuning point which minimizes the leakage for the resonant-exchange qubit, and have found that although it does not coincide with the double-sweet-spot for the charge noise, they are rather close. Our results suggest that the resonant-exchange qubit has another advantage that leakage can be greatly suppressed compared to the exchange-only qubit, and operating at the double-sweet-spot point should be optimal both for reducing charge noise and suppressing leakage.

Publisher URL: http://arxiv.org/abs/1711.06418

DOI: arXiv:1711.06418v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.