3 years ago

Hierarchically Enhanced Impact Resistance of Bioinspired Composites

Hierarchically Enhanced Impact Resistance of Bioinspired Composites
Grace X. Gu, Markus J. Buehler, Mahdi Takaffoli
An order of magnitude tougher than nacre, conch shells are known for being one of the toughest body armors in nature. However, the complexity of the conch shell architecture creates a barrier to emulating its cross-lamellar structure in synthetic materials. Here, a 3D biomimetic conch shell prototype is presented, which can replicate the crack arresting mechanisms embedded in the natural architecture. Through an integrated approach combining simulation, additive manufacturing, and drop tower testing, the function of hierarchy in conch shell's multiscale microarchitectures is explicated. The results show that adding the second level of cross-lamellar hierarchy can boost impact performance by 70% and 85% compared to a single-level hierarchy and the stiff constituent, respectively. The overarching mechanism responsible for the impact resistance of conch shell is the generation of pathways for crack deviation, which can be generalized to the design of future protective apparatus such as helmets and body armor. An order of magnitude tougher than nacre, conch shells are known for being one of the toughest biological body armors. However, the complexity of the conch shell architecture creates a barrier to emulating its cross-lamellar structure in synthetic materials. In this paper, a 3D biomimetic conch shell prototype is presented, which can replicate the crack arresting mechanisms embedded in the natural architecture.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201700060

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.