3 years ago

Precise Two-Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregation-Induced Emission Characteristics

Precise Two-Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregation-Induced Emission Characteristics
Feng Yin, Bin Liu, Gaixia Xu, Guangxue Feng, Peter Han Joo Chong, Bobo Gu, Junle Qu, Ken-Tye Yong, Wenbo Wu
Two-photon photodynamic therapy (PDT) is able to offer precise 3D manipulation of treatment volumes, providing a target level that is unattainable with current therapeutic techniques. The advancement of this technique is greatly hampered by the availability of photosensitizers with large two-photon absorption (TPA) cross section, high reactive-oxygen-species (ROS) generation efficiency, and bright two-photon fluorescence. Here, an effective photosensitizer with aggregation-induced emission (AIE) characteristics is synthesized, characterized, and encapsulated into an amphiphilic block copolymer to form organic dots for two-photon PDT applications. The AIE dots possess large TPA cross section, high ROS generation efficiency, and excellent photostability and biocompatibility, which overcomes the limitations of many conventional two-photon photosensitizers. Outstanding therapeutic performance of the AIE dots in two-photon PDT is demonstrated using in vitro cancer cell ablation and in vivo brain-blood-vessel closure as examples. This shows therapy precision up to 5 µm under two-photon excitation. A new two-photon photosensitizer is synthesized and formulated into organic dots with aggregation-induced emission characteristics, large two-photon absorption cross section, high reactive-oxygen-species generation efficiency, and excellent photostability and biocompatibility, enabling in vitro cancer cell ablation and in vivo brain-blood-vessel closure with 5 µm precision under two-photon excitation.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701076

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.