4 years ago

Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO2–SrTiO3 Core–Shell Nanowire Photoelectrochemical System

Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO2–SrTiO3 Core–Shell Nanowire Photoelectrochemical System
Huang Yang, Weimin Shi, Weiguang Yang, Linjun Wang, Lu Huang, Jianguo Chen, Zhenquan Li, Xudong Wang, Lazarus N. German, Fei Wu, Yanhao Yu
Efficient charge separation and transportation are key factors that determine the photoelectrochemical (PEC) water-splitting efficiency. Here, a simultaneous enhancement of charge separation and hole transportation on the basis of ferroelectric polarization in TiO2–SrTiO3 core–shell nanowires (NWs) is reported. The SrTiO3 shell with controllable thicknesses generates a considerable spontaneous polarization, which effectively tunes the electrical band bending of TiO2. Combined with its intrinsically high charge mobility, the ferroelectric SrTiO3 thin shell significantly improves the charge-separation efficiency (ηseparation) with minimized influence on the hole-migration property of TiO2 photoelectrodes, leading to a drastically increased photocurrent density ( Jph). Specifically, the 10 nm-thick SrTiO3 shell yields the highest Jph and ηseparation of 1.43 mA cm−2 and 87.7% at 1.23 V versus reversible hydrogen electrode, respectively, corresponding to 83% and 79% improvements compared with those of pristine TiO2 NWs. The PEC performance can be further manipulated by thermal treatment, and the control of SrTiO3 film thicknesses and electric poling directions. This work suggests a material with combined ferroelectric and semiconducting features could be a promising solution for advancing PEC systems by concurrently promoting the charge-separation and hole-transportation properties. In a TiO2–SrTiO3 core–shell nanowire photoelectrochemical (PEC) photoanode, the ferroelectric shell provides a spontaneous polarization to enhance charge separation. Meanwhile the favorable charge mobility in the shell also facilitates hole transport for water oxidation, leading to a significant enhancement of the PEC performance.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701432

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.