3 years ago

Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels

Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels
Guangwei He, Zhen Li, Shengtao Jiang, Zhongyi Jiang, Xueyi He, Tong Huang, Moyuan Cao, Michael D. Guiver, Shaofei Wang, Hong Wu, Jing Zhao, Mingzhao Xu
Solid electrolytes have attracted much attention due to their great prospects in a number of energy- and environment-related applications including fuel cells. Fast ion transport and superior mechanical properties of solid electrolytes are both of critical significance for these devices to operate with high efficiency and long-term stability. To address a common tradeoff relationship between ionic conductivity and mechanical properties, electrolyte membranes with proton-conducting 2D channels and nacre-inspired architecture are reported. An unprecedented combination of high proton conductivity (326 mS cm−1 at 80 °C) and superior mechanical properties (tensile strength of 250 MPa) are achieved due to the integration of exceptionally continuous 2D channels and nacre-inspired brick-and-mortar architecture into one materials system. Moreover, the membrane exhibits higher power density than Nafion 212 membrane, but with a comparative weight of only ≈0.1, indicating potential savings in system weight and cost. Considering the extraordinary properties and independent tunability of ion conduction and mechanical properties, this bioinspired approach may pave the way for the design of next-generation high-performance solid electrolytes with nacre-like architecture. The advancement of solid electrolytes is severely impeded by the strong tradeoff relationship between ion-conduction and mechanical properties. Through integrating 2D channels and “brick-and-mortar” architecture into one materials system, an unprecedented combination of high proton conductivity and superior mechanical strength are achieved. This intriguing design may pave the way for the bioinspired design of next-generation high-performance solid electrolytes.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201605898

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.