5 years ago

Rhodium-Catalyzed Silylative and Germylative Cyclization with Dehydrogenation Leading to 9-Sila- and 9-Germafluorenes: A Combined Experimental and Computational Mechanistic Study

Rhodium-Catalyzed Silylative and Germylative Cyclization with Dehydrogenation Leading to 9-Sila- and 9-Germafluorenes: A Combined Experimental and Computational Mechanistic Study
Ryo Okada, Masahito Murai, Sobi Asako, Kazuhiko Takai
Stoichiometric amounts of oxidants are widely used as promoters (hydrogen acceptors) in dehydrogenative silylation of C−H bonds. However, the present study demonstrates that silylative and germylative cyclization with dehydrogenation can proceed efficiently, even without hydrogen acceptors. The combination of [RhCl(cod)]2 and PPh3 was effective for both transformations, and allowed a reduction in reaction temperature compared with our previous report. Monitoring of the reactions revealed that both transformations had an induction period for the early stage, and that the rate constant of dehydrogenative germylation was greater than that of dehydrogenative silylation. Competitive reactions in the presence of 3,3-dimethyl-1-butene indicated that the ratio of dehydrogenative metalation and hydrometalation was affected by reaction temperature when a hydrosilane or hydrogermane precursor was used. Further mechanistic insights of oxidant-free dehydrogenative silylation, including the origin of these unique reactivities, were obtained by density functional theory studies. Activating the unactivated: The combination of [RhCl(cod)]2 and PPh3 is used to catalyze the oxidant-free dehydrogenative silylation and germylation of unactivated C(sp2)−H bonds under neutral conditions (see scheme). The experimentally obtained unique reactivity is supported by the results of theoretical calculations, and a plausible reaction mechanism, including insights into why the current transformation does not require hydrogen acceptors and heteroatom-containing directing groups, is proposed.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201701579

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.