5 years ago

Monte Carlo Simulations of Spin Transport in a Strained Nanoscale InGaAs Field Effect Transistor.

S. Schirmer, B. Thorpe, K. Kalna, F. C. Langbein

Spin-based logic devices could operate at very high speed with very low energy consumption and hold significant promise for quantum information processing and metrology. Here, an in-house developed, experimentally verified, ensemble self-consistent Monte Carlo device simulator with a Bloch equation model using a spin-orbit interaction Hamiltonian accounting for Dresselhaus and Rashba couplings is developed and applied to a spin field effect transistor (spinFET) operating under externally applied voltages on a gate and a drain. In particular, we simulate electron spin transport in a \SI{25}{nm} gate length \chem{In_{0.7}Ga_{0.3}As} metal-oxide-semiconductor field-effect transistor (MOSFET) with a CMOS compatible architecture. We observe non-uniform decay of the net magnetization between the source and gate and a magnetization recovery effect due to spin refocusing induced by a high electric field between the gate and drain. We demonstrate coherent control of the polarization vector of the drain current via the source-drain and gate voltages, and show that the magnetization of the drain current is strain-sensitive and can be increased twofold by strain induced into the channel.

Publisher URL: http://arxiv.org/abs/1610.04114

DOI: arXiv:1610.04114v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.