5 years ago

Correlation and shear bands in a plastically deformed granular medium.

Kamran Karimi, Jean-Louis Barrat

Recent experiments (Le Bouil et al., Phys. Rev. Lett., 2014, 112, 246001) have analyzed the statistics of local deformation in a granular solid undergoing plastic deformation. Experiments report strongly anisotropic correlation between events, with a characteristic angle that was interpreted using elasticity theory and the concept of Eshelby transformations with dilation; interestingly, the shear bands that characterize macroscopic failure occur at an angle that is different from the one observed in microscopic correlations. Here, we interpret this behavior using a mesoscale elastoplastic model of solid flow that incorporates a local Mohr-Coulomb failure criterion. We show that the angle observed in the microscopic correlations can be understood by combining the elastic interactions associated with Eshelby transformation with the local failure criterion. At large strains, we also induce permanent shear bands at an angle that is different from the one observed in the correlation pattern. We interpret this angle as the one that leads to the maximal instability of slip lines.

Publisher URL: http://arxiv.org/abs/1711.06832

DOI: arXiv:1711.06832v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.