5 years ago

Synthesis of Ultrafine and Highly Dispersed Metal Nanoparticles Confined in a Thioether-Containing Covalent Organic Framework and Their Catalytic Applications

Synthesis of Ultrafine and Highly Dispersed Metal Nanoparticles Confined in a Thioether-Containing Covalent Organic Framework and Their Catalytic Applications
Yinghua Jin, Ryan McCaffrey, Yiming Hu, Shun Wan, Wei Zhang, Hongwei Gu, Shuanglong Lu
Covalent organic frameworks (COFs) with well-defined and customizable pore structures are promising templates for the synthesis of nanomaterials with controllable sizes and dispersity. Herein, a thioether-containing COF has been rationally designed and used for the confined growth of ultrafine metal nanoparticles (NPs). Pt or Pd nanoparticles (Pt NPs and Pd NPs) immobilized inside the cavity of the COF material have been successfully prepared at a high loading with a narrow size distribution (1.7 ± 0.2 nm). We found the crystallinity of the COF support and the presence of thioether groups inside the cavities are critical for the size-controlled synthesis of ultrafine NPs. The as-prepared COF-supported ultrafine Pt NPs and Pd NPs show excellent catalytic activity respectively in nitrophenol reduction and Suzuki–Miyaura coupling reaction under mild conditions and low catalyst loading. More importantly, they are highly stable and easily recycled and reused without loss of their catalytic activities. Such COF-supported size-controlled synthesis of nanoparticles will open a new frontier on design and preparation of metal NP@COF composite materials for various potential applications, such as catalysis and development of optical and electronic materials.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b07918

DOI: 10.1021/jacs.7b07918

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.