3 years ago

High-Yield Synthesis of Crystal-Phase-Heterostructured 4H/fcc Au@Pd Core–Shell Nanorods for Electrocatalytic Ethanol Oxidation

High-Yield Synthesis of Crystal-Phase-Heterostructured 4H/fcc Au@Pd Core–Shell Nanorods for Electrocatalytic Ethanol Oxidation
Hua Zhang, Zhanxi Fan, Zhuangchai Lai, Zhimin Luo, Yun Zong, Ye Chen, Bing Li, Xiaozhi Liu, Lin Gu
Noble-metal nanomaterials are attracting increasing research interest due to their promising applications in electrochemical catalysis, for example. Although great efforts have been devoted to the size-, shape-, and architecture-controlled synthesis of noble-metal nanomaterials, their crystal-phase-controlled synthesis is still in its infancy. Here, for the first time, this study reports high-yield synthesis of Au nanorods (NRs) with alternating 4H/face-centered cubic (fcc) crystal-phase heterostructures via a one-pot wet-chemical method. The coexistence of 4H and fcc phases is relatively stable, and the 4H/fcc Au NRs can serve as templates for crystal-phase-controlled epitaxial growth of other metals. As an example, bimetallic 4H/fcc Au@Pd core–shell NRs are synthesized via the epitaxial growth of Pd on 4H/fcc Au NRs. Significantly, the 4H/fcc Au@Pd NRs show superior mass activity toward the ethanol oxidation reaction, i.e., 6.2 and 4.9 times those of commercial Pd black and Pt/C catalysts, respectively. It is believed that this new synthetic strategy can be used to prepare other novel catalysts for various promising applications. High-yield crystal-phase-heterostructured 4H/fcc Au@Pd core–shell nanorods are successfully synthesized via a one-pot, facile, wet-chemical method. By using the 4H/fcc Au nanorod as a template, a 4H/fcc Au@Pd nanorod with epitaxially grown Pd shell is prepared, which exhibits superior electrocatalytic performance toward the ethanol oxidation reaction.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701331

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.