5 years ago

The Polarization of Polycyclic Aromatic Hydrocarbons Curved by Pentagon Incorporation: The Role of the Flexoelectric Dipole

The Polarization of Polycyclic Aromatic Hydrocarbons Curved by Pentagon Incorporation: The Role of the Flexoelectric Dipole
Markus Kraft, Jethro Akroyd, Radomir I. Slavchov, Jacob W. Martin, Edward K. Y. Yapp, Sebastian Mosbach
Curvature in polyaromatic hydrocarbons (PAHs), due to pentagon inclusion, produces a dipole moment that contributes significantly to self-assembly processes and adsorption at the surface of carbon materials containing curved structures. This work presents electronic structure calculations of the dipole moment for 18 different curved PAH molecules for various numbers of pentagons and the total number of aromatic rings. A significant dipole moment was found that depends strongly on the number of aromatic rings (4–6.5 D for ring count 10–20). The main cause for the dipole is shown to be the π-electron flexoelectric effect. An atom-centered partial charge representation of the charge distribution in these molecules is insufficient to correctly describe their electrostatic potential; distributed multipoles were required instead.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b09044

DOI: 10.1021/acs.jpcc.7b09044

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.