5 years ago

Highly Selective Conversion of Carbon Dioxide to Lower Olefins

Highly Selective Conversion of Carbon Dioxide to Lower Olefins
Hailong Liu, Hongyu An, Chizhou Tang, Jijie Wang, Can Li, Shu Miao, Zhaochi Feng, Yuanzhi Qu, Zelong Li
Conversion of CO2 to value-added chemicals has been a long-standing objective, and direct hydrogenation of CO2 to lower olefins is highly desirable but still challenging. Herein, we report a selective conversion of CO2 to lower olefins through CO2 hydrogenation over a ZnZrO/SAPO tandem catalyst fabricated with a ZnO-ZrO2 solid solution and a Zn-modified SAPO-34 zeolite, which can achieve a selectivity for lower olefins as high as 80–90% among hydrocarbon products. This is realized on the basis of the dual functions of the tandem catalyst: hydrogenation of CO2 on the ZnO-ZrO2 solid solution and lower olefins production on the SAPO zeolite. The thermodynamic and kinetic coupling between the tandem reactions enable the highly efficient conversion of CO2 to lower olefins. Furthermore, this catalyst is stable toward the thermal and sulfur treatments, showing the potential industrial application.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b03251

DOI: 10.1021/acscatal.7b03251

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.