5 years ago

Molecular Determinants and Bottlenecks in the Dissociation Dynamics of Biotin–Streptavidin

Molecular Determinants and Bottlenecks in the Dissociation Dynamics of Biotin–Streptavidin
Pratyush Tiwary
Biotin–streptavidin is a very popular system used to gain insight into protein–ligand interactions. In its tetrameric form, it is well-known for its exceptionally high kinetic stability, being one of the strongest known noncovalent interactions in nature, and it is heavily used across the biotechnological industry. In this work, we gain understanding of the molecular determinants and bottlenecks in the dissociation of the dimeric biotin–streptavidin system in wild type and with a point mutation. Using recently proposed enhanced sampling methods with full atomistic resolution, we reproduce the experimentally reported effect of the mutation on the dissociation rate. We also answer a longstanding question regarding cause/effect in the coupled events of bond stretching and bond hydration during dissociation and establish that in this system, it is the bond stretching and not hydration which forms the bottleneck in the early parts of the dissociation process. We believe these calculations represent a step forward in the use of atomistic simulations to study pharmacokinetics. An improved understanding of biotin–streptavidin dissociation dynamics should also have direct benefits in biotechnological and nanobiotechnological applications.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b09510

DOI: 10.1021/acs.jpcb.7b09510

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.