5 years ago

An Average Solvent Electrostatic Configuration Protocol for QM/MM Free Energy Optimization: Implementation and Application to Rhodopsin Systems

An Average Solvent Electrostatic Configuration Protocol for QM/MM Free Energy Optimization: Implementation and Application to Rhodopsin Systems
María del Carmen Marín, Nicolas Ferré, Kwang-Hwan Jung, Stefan Haacke, Damianos Agathangelou, Madushanka Manathunga, Massimo Olivucci, Sylvio Canuto, Kaline Coutinho, Yoelvis Orozco-Gonzalez, Federico Melaccio
A novel atomistic methodology to perform free energy geometry optimization of a retinal chromophore covalently bound to any rhodopsin-like protein cavity is presented and benchmarked by computing the absorption maxima wavelengths (λmax) of distant rhodopsin systems. The optimization is achieved by computing the Nagaoka’s Free Energy Gradient (FEG) within an Average Solvent Electrostatic Configuration (ASEC) atomistic representation of the thermodynamic equilibrium and minimizing such quantity via an iterative procedure based on sequential classical MD and constrained QM/MM geometry optimization steps. The performance of such an ASEC-FEG protocol is assessed at the CASPT2//CASSCF/Amber level by reproducing the λmax values observed for 12 mutants of redesigned human cellular retinol binding protein II (hCRBPII) systems; a set of 10 distant wild-type rhodopsins from vertebrates, invertebrates, eubacteria, and archaea organisms; and finally a set of 10 rhodopsin mutants from an eubacterial rhodopsin. The results clearly show that the proposed protocol, which can be easily extended to any protein incorporating a covalently bound ligand, yields correct λmax trends with limited absolute errors.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00860

DOI: 10.1021/acs.jctc.7b00860

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.