5 years ago

Li+ Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations

Li+ Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations
Justin B. Hooper, Dmitry Bedrov, Oleg Borodin
A fundamental understanding of solid electrolyte interphase (SEI) properties is critical for enabling further improvement of lithium batteries and stabilizing the anode–electrolyte interface. Mechanical and transport properties of two model SEI components were investigated using molecular dynamics (MD) simulations and a hybrid MD-Monte Carlo (MC) scheme. A many-body polarizable force field (APPLE&P) was employed in all simulations. Elastic moduli and conductivity of model SEIs comprised of dilithium ethylene dicarbonate (Li2EDC) were compared with those comprised of dilithium butylene dicarbonate (Li2BDC) over a wide temperature range. Both ordered and disordered materials were examined with the ordered materials showing higher conductivity in the conducting plane compared to conductivity of the disordered analogues. Li2BDC was found to exhibit softening and onset of anion mobility at lower temperatures compared to Li2EDC. At 120 °C and below, both SEI model compounds showed single ion conductor behavior. Ordered Li2EDC and Li2BDC phases had highly anisotropic mechanical properties, with the shear modulus of Li2BDC being systematically smaller than that for Li2EDC.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04247

DOI: 10.1021/acs.jpcc.7b04247

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.