3 years ago

Design of Metastable Tin Titanium Nitride Semiconductor Alloys

Design of Metastable Tin Titanium Nitride Semiconductor Alloys
Stephan Lany, Andriy Zakutayev, John S. Mangum, Jing Gu, Aaron Holder, Sebastian Siol, Andre Bikowski, Brian Gorman, William Tumas
We report on design of optoelectronic properties in previously unreported metastable tin titanium nitride alloys with spinel crystal structure. Theoretical calculations predict that Ti alloying in metastable Sn3N4 compound should improve hole effective mass by up to 1 order of magnitude, while other optical bandgaps remains in the 1–2 eV range up to x ∼ 0.35 Ti composition. Experimental synthesis of these metastable alloys is predicted to be challenging due to high required nitrogen chemical potential (ΔμN ≥ +1.0 eV) but proven to be possible using combinatorial cosputtering from metal targets in the presence of nitrogen plasma. Characterization experiments confirm that thin films of such (Sn1–xTix)3N4 alloys can be synthesized up to x = 0.45 composition, with suitable optical band gaps (1.5–2.0 eV), moderate electron densities (1017 to 1018 cm–3), and improved photogenerated hole transport (by 5×). Overall, this study shows that it is possible to design the metastable nitride materials with properties suitable for potential use in solar energy conversion applications.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02122

DOI: 10.1021/acs.chemmater.7b02122

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.