5 years ago

Developing a Descriptor-Based Approach for CO and NO Adsorption Strength to Transition Metal Sites in Zeolites

Developing a Descriptor-Based Approach for CO and NO Adsorption Strength to Transition Metal Sites in Zeolites
Ive Hermans, Pajean Uchupalanun, Philippe Sautet, Florian Göltl, Philipp Müller
The discovery of new materials tailored for a given application typically requires the screening of a large number of compounds, and this process can be significantly accelerated by computational analysis. In such an approach the performance of a compound is correlated to a materials property, a so-called descriptor. Here we develop a descriptor-based approach for the adsorption of CO and NO to Cu, Ni, Co, and Fe sites in zeolites. We start out by discussing a possible design strategy for zeolite catalysts, define the studied test set of sites in the zeolites SSZ-13 and mordenite, and define a set of appropriate descriptors. In a subsequent step we use these descriptors in single-parameter, two-parameter, and multiparameter regression analysis and finally use a machine-learning genetic algorithm to reduce the number of variables. We find that one or two descriptors are not sufficient to accurately capture the interactions between molecules and metal centers in zeolites, and indeed a multiparameter approach is necessary. Even though many of the descriptors are directly correlated, we identify the position of the s orbital and the number of valence electrons of the active site as well as the HOMO–LUMO gap of the adsorbate as most important descriptors. Furthermore, the reconstruction of the active sites upon adsorption plays a crucial role, and when it is explicitly included in the analysis, correlations improve significantly. In the future we expect that the fundamental methodology developed here will be adapted and transferred to selected problems in adsorption and catalysis and will assist the rational design of materials for the given application.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01860

DOI: 10.1021/acs.chemmater.7b01860

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.