5 years ago

An Assay Based on SAMDI Mass Spectrometry for Profiling Protein Interaction Domains

An Assay Based on SAMDI Mass Spectrometry for Profiling Protein Interaction Domains
Milan Mrksich, Patrick T. O’Kane
This paper describes an assay that can profile the binding of a protein to ligands and can rank the affinities of a library of ligands. The method is based on the enhanced rate of an enzyme-mediated reaction that follows from colocalization of the enzyme and substrate by a protein–ligand interaction. This assay uses a self-assembled monolayer that presents a candidate peptide ligand for a receptor and a peptide substrate for an enzyme. The receptor is prepared as a fusion to the relevant enzyme so that binding of the receptor to the immobilized ligand brings the enzyme to the surface, where it can more rapidly modify its substrate. The extent of conversion of the substrate to product is therefore a measure of the average time the ligand–receptor complex is present and is quantified using the SAMDI mass spectrometry technique. The approach is used to profile the binding of chromodomain proteins to methylated lysine peptides derived from the histone 3 protein. The relative affinities for the peptide ligands found in this work agreed with results from prior studies. Additionally, this work revealed cross-talk interactions whereby phosphorylation of certain residues impaired binding of chromodomains to the peptide ligands. The method presented here, which we term protein interaction by SAMDI (PI-SAMDI), has the advantages that it is applicable to low-affinity interactions because the complexes are not observed directly, but rather leave a “covalent record” of the interaction that is measured with mass spectrometry and because it is compatible with laboratory automation for high-throughput analysis.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03805

DOI: 10.1021/jacs.7b03805

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.